10,060 research outputs found

    High-harmonic generation from arbitrarily oriented diatomic molecules including nuclear motion and field-free alignment

    Get PDF
    We present a theoretical model of high-harmonic generation from diatomic molecules. The theory includes effects of alignment as well as nuclear motion and is used to predict results for N2_2, O2_2, H2_2 and D2_2. The results show that the alignment dependence of high-harmonics is governed by the symmetry of the highest occupied molecular orbital and that the inclusion of the nuclear motion in the theoretical description generally reduces the intensity of the harmonic radiation. We compare our model with experimental results on N2_2 and O2_2, and obtain very good agreement.Comment: 12 pages, 8 figures, 2 tables; legends revised on Figs. 1,3,4,6 and

    Classification of String-like Solutions in Dilaton Gravity

    Get PDF
    The static string-like solutions of the Abelian Higgs model coupled to dilaton gravity are analyzed and compared to the non-dilatonic case. Except for a special coupling between the Higgs Lagrangian and the dilaton, the solutions are flux tubes that generate a non-asymptotically flat geometry. Any point in parameter space corresponds to two branches of solutions with two different asymptotic behaviors. Unlike the non-dilatonic case, where one branch is always asymptotically conic, in the present case the asymptotic behavior changes continuously along each branch.Comment: 15 pages, 6 figures. To be published in Phys. Rev.

    Manipulating the torsion of molecules by strong laser pulses

    Full text link
    A proof-of-principle experiment is reported, where torsional motion of a molecule, consisting of a pair of phenyl rings, is induced by strong laser pulses. A nanosecond laser pulse spatially aligns the carbon-carbon bond axis, connecting the two phenyl rings, allowing a perpendicularly polarized, intense femtosecond pulse to initiate torsional motion accompanied by an overall rotation about the fixed axis. The induced motion is monitored by femtosecond time-resolved Coulomb explosion imaging. Our theoretical analysis accounts for and generalizes the experimental findings.Comment: 4 pages, 4 figures, submitted to PRL; Major revision of the presentation of the material; Correction of ion labels in Fig. 2(a

    High Q Cavity Induced Fluxon Bunching in Inductively Coupled Josephson Junctions

    Get PDF
    We consider fluxon dynamics in a stack of inductively coupled long Josephson junctions connected capacitively to a common resonant cavity at one of the boundaries. We study, through theoretical and numerical analysis, the possibility for the cavity to induce a transition from the energetically favored state of spatially separated shuttling fluxons in the different junctions to a high velocity, high energy state of identical fluxon modes.Comment: 8 pages, 5 figure

    Complete elimination of information leakage in continuous-variable quantum communication channels

    Get PDF
    In all lossy communication channels realized to date, information is inevitably leaked to a potential eavesdropper. Here we present a communication protocol that does not allow for any information leakage to a potential eavesdropper in a purely lossy channel. By encoding information into a restricted Gaussian alphabet of squeezed states we show, both theoretically and experimentally, that the Holevo information between the eavesdropper and the intended recipient can be exactly zero in a purely lossy channel while minimized in a noisy channel. This result is of fundamental interest, but might also have practical implications in extending the distance of secure quantum key distribution.Comment: 9 pages, 5 figure

    NuSTAR Observations of G11.2–0.3

    Get PDF
    We present in this paper the hard X-ray view of the pulsar wind nebula in G11.2−0.3 and its central pulsar powered pulsar J1811−1925 as seen by NuSTAR. We complement the data with Chandra for a more complete picture and confirm the existence of a hard, power-law component in the shell with photon index Γ = 2.1 ± 0.1, which we attribute to synchrotron emission. Our imaging observations of the shell show a slightly smaller radius at higher energies, consistent with Chandra results, and we find shrinkage as a function of increased energy along the jet direction, indicating that the electron outflow in the PWN may be simpler than that seen in other young PWNe. Combining NuSTAR with INTEGRAL, we find that the pulsar spectrum can be fit by a power law with Γ = 1.32 ± 0.07 up to 300 keV without evidence of curvature
    • …
    corecore